3.295 \(\int \frac {\sqrt {b \tan (e+f x)}}{(d \sec (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=34 \[ \frac {2 (b \tan (e+f x))^{3/2}}{3 b f (d \sec (e+f x))^{3/2}} \]

[Out]

2/3*(b*tan(f*x+e))^(3/2)/b/f/(d*sec(f*x+e))^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 34, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.040, Rules used = {2605} \[ \frac {2 (b \tan (e+f x))^{3/2}}{3 b f (d \sec (e+f x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[b*Tan[e + f*x]]/(d*Sec[e + f*x])^(3/2),x]

[Out]

(2*(b*Tan[e + f*x])^(3/2))/(3*b*f*(d*Sec[e + f*x])^(3/2))

Rule 2605

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> -Simp[((a*Sec[e
+ f*x])^m*(b*Tan[e + f*x])^(n + 1))/(b*f*m), x] /; FreeQ[{a, b, e, f, m, n}, x] && EqQ[m + n + 1, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {b \tan (e+f x)}}{(d \sec (e+f x))^{3/2}} \, dx &=\frac {2 (b \tan (e+f x))^{3/2}}{3 b f (d \sec (e+f x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.12, size = 34, normalized size = 1.00 \[ \frac {2 (b \tan (e+f x))^{3/2}}{3 b f (d \sec (e+f x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[b*Tan[e + f*x]]/(d*Sec[e + f*x])^(3/2),x]

[Out]

(2*(b*Tan[e + f*x])^(3/2))/(3*b*f*(d*Sec[e + f*x])^(3/2))

________________________________________________________________________________________

fricas [A]  time = 0.55, size = 50, normalized size = 1.47 \[ \frac {2 \, \sqrt {\frac {b \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \sqrt {\frac {d}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right )}{3 \, d^{2} f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e))^(1/2)/(d*sec(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

2/3*sqrt(b*sin(f*x + e)/cos(f*x + e))*sqrt(d/cos(f*x + e))*cos(f*x + e)*sin(f*x + e)/(d^2*f)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {b \tan \left (f x + e\right )}}{\left (d \sec \left (f x + e\right )\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e))^(1/2)/(d*sec(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*tan(f*x + e))/(d*sec(f*x + e))^(3/2), x)

________________________________________________________________________________________

maple [A]  time = 0.67, size = 50, normalized size = 1.47 \[ \frac {2 \sin \left (f x +e \right ) \sqrt {\frac {b \sin \left (f x +e \right )}{\cos \left (f x +e \right )}}}{3 f \cos \left (f x +e \right ) \left (\frac {d}{\cos \left (f x +e \right )}\right )^{\frac {3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*tan(f*x+e))^(1/2)/(d*sec(f*x+e))^(3/2),x)

[Out]

2/3/f*sin(f*x+e)*(b*sin(f*x+e)/cos(f*x+e))^(1/2)/cos(f*x+e)/(d/cos(f*x+e))^(3/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {b \tan \left (f x + e\right )}}{\left (d \sec \left (f x + e\right )\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e))^(1/2)/(d*sec(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*tan(f*x + e))/(d*sec(f*x + e))^(3/2), x)

________________________________________________________________________________________

mupad [B]  time = 3.48, size = 55, normalized size = 1.62 \[ \frac {\sin \left (2\,e+2\,f\,x\right )\,\sqrt {\frac {d}{\cos \left (e+f\,x\right )}}\,\sqrt {\frac {b\,\sin \left (2\,e+2\,f\,x\right )}{\cos \left (2\,e+2\,f\,x\right )+1}}}{3\,d^2\,f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*tan(e + f*x))^(1/2)/(d/cos(e + f*x))^(3/2),x)

[Out]

(sin(2*e + 2*f*x)*(d/cos(e + f*x))^(1/2)*((b*sin(2*e + 2*f*x))/(cos(2*e + 2*f*x) + 1))^(1/2))/(3*d^2*f)

________________________________________________________________________________________

sympy [A]  time = 26.00, size = 53, normalized size = 1.56 \[ \begin {cases} \frac {2 \sqrt {b} \tan ^{\frac {3}{2}}{\left (e + f x \right )}}{3 d^{\frac {3}{2}} f \sec ^{\frac {3}{2}}{\left (e + f x \right )}} & \text {for}\: f \neq 0 \\\frac {x \sqrt {b \tan {\relax (e )}}}{\left (d \sec {\relax (e )}\right )^{\frac {3}{2}}} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e))**(1/2)/(d*sec(f*x+e))**(3/2),x)

[Out]

Piecewise((2*sqrt(b)*tan(e + f*x)**(3/2)/(3*d**(3/2)*f*sec(e + f*x)**(3/2)), Ne(f, 0)), (x*sqrt(b*tan(e))/(d*s
ec(e))**(3/2), True))

________________________________________________________________________________________